分?jǐn)?shù)的極限怎么求 分式函數(shù)求極限的方法
求所有分式型極限的求法歸類,求極限,分式怎么求?求極限的所有方法,要求詳細(xì)點(diǎn),分式函數(shù)求極限的方法,分式求極限。
本文導(dǎo)航
求所有分式型極限的求法歸類
所有分式型極限的求法
這個(gè),“所有”會(huì)嚇到人的!沒人敢夸口能全給你列出來!會(huì)惹眾怒的!下面我列幾個(gè)常見常用的給你就好啦?。?/p>
1,不定式極限,也就是 “0/0”型或 “∞/∞”型
比如,lim(sinx/x)
當(dāng)x趨向0的時(shí)候,就叫“0/0”型;
比如,lim[tanx/(x-Pi/2)]
當(dāng)x趨向Pi/2的時(shí)候,就叫“∞/∞”型。
2,有理分式,看分母和分子的冪,分母冪高的話,就用拼湊法!
分子冪高的話!分子分母都除掉分母的最高次項(xiàng)!
3,無理分式,用換元思想,用平方差,立方和差等公式!
就三樣啦!
后面兩樣的例子就不舉了!
求極限,分式怎么求
如圖
求極限的所有方法,要求詳細(xì)點(diǎn)
分式函數(shù)求極限的方法
分步閱讀
確定函數(shù)類型,分為(c/0)型,(0/0)型,(無窮/無窮)x型
(c/0)型:如lim(x→1)(4x-1)/(x^2-2x-3) 其結(jié)果為無窮;
(0/0)型:如lim(x →3)(x^2-4x+3)/(x^2-9) 上下消去公因子(x-3) 得到lim(x →3)(x-1)/(x-3) 其結(jié)果為1/3;
(無窮/無窮)型:如lim(x趨于無窮)(3x^2-3x+9)/(5x^2+2x-1) 分子分母除以分母最高次項(xiàng) 可化為lim(x趨于無窮)(3-3/x+9/x^2)/(5+2/x-1/x^2) 其結(jié)果為3/5
分式形式的函數(shù)求極限是極限知識(shí)中的一個(gè)重點(diǎn)也是一個(gè)難點(diǎn)問題,在分式形式各異時(shí),求極限的方法也不近一致,很多學(xué)生在遇到求分式形式的函數(shù)極限時(shí),不知該用哪種方法來解答,甚至不知如何動(dòng)手。本文從分子分母的極限特點(diǎn)出發(fā),對(duì)分式形式的函數(shù)求極限方法進(jìn)行了分類和總結(jié)。 二、方法分類 若 f(x)=A, g(x)=B (A,B 為常數(shù)或) ,下面根據(jù) A,B 的取值特點(diǎn)對(duì)分式 在 x→x0 時(shí)極限常見情況進(jìn)行分類討論. (1)當(dāng) A,B 均為常數(shù),且 B≠0 時(shí),由極限的運(yùn)算法則有: = = (B≠0) (2)當(dāng) A,B 均為常數(shù),且 B=0 而 A≠0 時(shí),則有: =∞分析:由于分母為無窮小,分子極限為不等于 0 的常數(shù),則無窮小的倒數(shù)為無窮大。 分析:分子極限為 3,分母極限為 0. (3)當(dāng) A=B=0 時(shí), 為 “ ”型的未定式,求極限方法還可細(xì)分:1) 當(dāng)分子,分母可以因式分解約分化簡時(shí),則考慮約分.例 3、求 解: = = =6。2)當(dāng)分子,分母中有根式時(shí),則考慮有理化.例 4、求 解: =lim = =。3)當(dāng)分子上有與 sinx 聯(lián)系的三角函數(shù)且形式較簡單時(shí),則考慮與第一個(gè)重要極限 =1 的聯(lián)系,利用結(jié)論 =1 求解.例 5、求 解: = ×2=2。4)當(dāng)分子分母滿足羅比達(dá)法則的三個(gè)條件時(shí),則采用羅比達(dá)法則求解.例 6、求 解: = = = (2+ ) (4)當(dāng)分子分母為無窮大時(shí):1)滿足羅比達(dá)法則的三個(gè)條件時(shí),考慮用羅比達(dá)法則求解.例 7、求 解: = = = =0。2)分子,分母為 x 的多項(xiàng)式時(shí),考慮用以下結(jié)論.一般地,當(dāng) a0≠0,b0≠0,m 和 n 為非負(fù)整數(shù)時(shí),有 = 三、結(jié)語 對(duì)于形式為分式的函數(shù)求極限,一定要具體問題具體分析,根據(jù)分子,分母極限取值情況的特點(diǎn)來選擇合適的方法,應(yīng)多練習(xí)以求熟能生巧,更應(yīng)注重方 法和方法的結(jié)合.
分式求極限
簡單的理解,因?yàn)楫?dāng)x趨近于0時(shí),分母x趨近于0,則要能使用洛必達(dá)法則,必有x趨近于0時(shí),分子整體也為0.
所以有1+a=0,即a=-1.
掃描二維碼推送至手機(jī)訪問。
版權(quán)聲明:本文由尚恩教育網(wǎng)發(fā)布,如需轉(zhuǎn)載請(qǐng)注明出處。